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The irreversible evolution of a model for ballistic coalescence of spherical par- 
ticles, whereby colliding particles merge into a single, larger sphere with conser- 
vation of mass and momentum, is analyzed on the basis of scaling assumptions, 
mean-field theory, and kinetic theory for arbitrary dimensionality and size-mass 
relation. The asymptotic growth regime is characterized by scaling laws 
associated with the instantaneous mean mass and kinetic energy of the particles. 
A hyperscaling relation between the mass and energy exponents is derived. The 
predictions of the theoretical analysis are tested by extensive simulations of 
the two-dimensional version of the model. Due to multiple coalescence events, 
the exponents are found to be nonuniversal (i.e., density dependent) and to differ 
significantly from the mean-field predictions. The distribution of masses turns 
out to be universal and exponential. Particle energies follow a Boltzmann dis- 
tribution, with a time-dependent temperature, or relax toward such a distribu- 
tion, even when the initial distribution is highly non-Maxwellian. In the case 
where the particles are "swollen" [i.e., the size-mass relation involves the Flory 
exponent v = 3/(d+ 2)], an asymptotic scaling regime is observed only for suf- 
ficiently low initial packing fractions. At higher densities, the irreversible evolu- 
tion terminates in a "catastrophic" coalescence event involving all remaining 
particles. 
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1. I N T R O D U C T I O N  

Statistical models of growth through aggregation or coalescence have 
received widespread theoretical and numerical attention in relation to irre- 
versible phenomena like nucleation, spinodal decomposition, colloidal 
aggregation, vapor condensation and breath figures, merging of vortices 
in turbulent flows, or even the formation of planets from interstellar dust. 
In many of these models, the elementary processes leading to growth 
are essentially random in nature. This is the case of the widely studied 
model of diffusion-limited aggregation (DLA) t~) (see ref. 2 for a review), 
where an eventually fractal object grows via the sequential attachment of 
random (or Brownian) walkers. In droplet deposition and growth models 
(see ref. 3 for a recent review) d-dimensional spheres are deposited at 
random on a (d-1)-dimensional  surface, where they grow by vapor 
collection and coalescence; the growing particles retain their spherical 
shape. 

In contrast to random growth, Carnevale e t  al .  ~4) considered an 
aggregation model governed by irreversible but deterministic dynamics, 
whereby d-dimensional spheres move freely within a d-dimensional volume 
(ballistic motion) until they collide with another sphere; the collisions are 
fully inelastic, but conserve mass and momentum; upon colliding, two 
spheres coalesce into a single sphere of diameter tr = (trd+ o'd) TM. The 
authors deduced the power law governing the asymptotic growth of the 
mean mass of the particles from a simple mean-field scaling argument, and 
conjectured an exponential universal distribution of masses in the 
asymptotic regime. Their predictions were found to agree well with results 
of simulations on the one-dimensional version of the model. The mean-field 
argument has been formalized by Jiang and Leyvraz, 15) who also stressed 
the need of carrying simulations in higher dimensions. Subsequently 
Piasecki 16) was able to derive the exponential distribution of masses in 1D 
from kinetic theory, on the basis of a weak mean-field-like assumption. 
Some rigorous long-time estimates of the mass spectrum were obtained by 
Martin and Piasecki. c7) 

However, an additional complication arises in dimensions higher than 
one, namely the possibility of multiple coalescence events, involving more 
than two partners. Such events occur whenever the particle resulting from 
the coalescence of two spheres coming into contact overlaps additional 
particles located in the immediate neighborhood of the initial pair. The 
importance of such events is expected to grow with increasing density, and 
to depend sensitively on the relation between diameter tr and mass m of the 
particles (this relation is assumed to be tr oc m TM in the analysis of 
Carnevale e t  al. (4~) 
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The purpose of the present work is accordingly two-fold. In a first 
step, the mean-field scaling analysis of ref. 4 is extended to the case of an 
arbitrary mass-size relation o-ocm ~. Such a generalization might serve as a 
crude model for polymerization, where a may be identified with the radius 
of gyration of a growing polymer coil and v could be the Flory exponent 
(for polymers in good solvent), rather than l i d  (corresponding to collapsed 
polymer chains). Going beyond the mean-field assumption, a careful 
scaling analysis of the exact kinetic equation governing the distribution 
function of masses and velocities, valid in the low-density limit, will lead us 
to a hyperscaling relation between the exponents of the asymptotic power 
laws governing the growth of the mean mass of the particles and the 
decrease of the total kinetic energy of the system. 

In a second stage, the predictions of the mean-field approximation will 
be confronted with data of extensive simulations carried out for two-dimen- 
sional systems (coalescing disks in a plane), with v = 1/2 and v = 3/4. The 
simulations, which take multiple coalescence events into account properly, 
clarify the role of the latter, which turns out to be the origin of non- 
universal scaling behavior. 

A preliminary account of parts of this work has appeared elsewhere. (s~ 

2. THE M O D E L  FOR BALLISTIC COALESCENCE 

Consider a system initially (at time t =  0) made up of No identical 
d-dimensional spheres of diameter t~o and mass mo, in a d-dimensional 
domain of measure s the initial number density is no--No/~,  and its 
dimensionless counterpart, wkich is proportional to the packing fraction, is 
n* = not~o d. The No particles are given initial velocities {vi}sampled from 
some distribution ~o(V). They then undergo free particle (or ballistic) 
motion, interrupted by a succession of instantaneous, completely inelastic 
collisions whenever a pair of spheres come into contact (no rotations of the 
particles are involved). As a result of an inelastic binary collision, the two 
initial spheres i and j merge into a single sphere with conservation of mass, 
center of mass (CM), and momentum: 

m = m i + m  j ( la)  

1 
r = - -  (m;u + mjrj) ( lb)  

m 

mv = miv  i + rnjvj ( l c )  



1348 Trizac and Hansen 

Since the initial relative velocity of the colliding pair, v;j = v , -  vj, vanishes 
in the inelastic collision, the final kinetic energy mvZ/2 is less than the initial 
kinetic energy: 

e=  ~mu2 <~ ei + ej= l ~ 1 2 _ ~_m, V- Z + 2 m j v )  

In fact, an elementary calculation shows that 

1 9 e, + ej= s + ~lzv~. 

where 1//1 = 1/mi + l/mj is the reduced mass, from which it can be deduced 
that e is bounded above and below by 

_ _  1 2 

m 

A diameter-mass relation of the form aocm v is assumed, such that, 
according to the mass conservation (la), the diameter of the sphere resulting 
from the coalescence of spheres i and j is given by 

= (~'/~ + ~r~/v) " (3) 

where physically reasonable values of the exponent are in the range 
0 ~< v ~< 1. If spheres are to be of constant density, v = 1/d, which is the case 
of ref. 4. However, in the polymer language, if spheres are to represent 
polymer coils of radius of gyration a, v can take the values l id  (collapsed 
chain), I/2 (Gaussian chain), or 3/(d+ 2), which is Flory's estimate of the 
exponent for a "swollen" (self-avoiding) chain. (9~ 

From the above characteristics of the model it is clear that the total 
number of particles N(t)  and the total kinetic energy of the system 

N(t) 
K(t) = ~ e, (4) 

i = l  

must be decreasing functions of time. On the other hand, the instantaneous 
mean mass 

1 Ntt) 
( m ) ( t ) = - - ) - "  mi = N ~ 1 7 6  

N(t)  ,=1 N(t)  (5) 

increases with time; conservation of mass [ Eq. (la)] was exploited in going 
from the first to the second equality in Eq. (5). The mean kinetic energy per 
particle defines an instantaneous kinetic temperature T(t): 

( e ) ( t )  = N_~t) Nt') K(t) d ,~'1= e i = N ( t ) - ~ k B T ( t )  (6) 



Particles Undergoing Ballistic Coalescence 1349 

Since both K(t)  and N(t)  are decreasing functions of time, it is not clear, 
a priori, how ( e ) ( t )  will vary in time. 

The mean-field analysis which will be discussed in Section 3 and the 
1D simulations of Carnevale et al., as well as the 2D simulations to be 
presented in Sections 6 and 7, point to an asymptotic power-law (or 
scaling) behavior of the mean mass and of the total kinetic energy. For 
sufficiently long times, this translates into 

( m ) (  t) oc t r (7a) 

K( t )~z t  -~ (7b) 

where ~ and ~ > 0 are the basic dynamical exponents. According to Eqs. (5) 
and (6), it follows that 

N ( t ) ~ t  -r (8a) 

( e ) (  t) oc t r  (8b) 

A key objective of the remainder of this paper will be to search for a 
possible scaling relation between the two fundamental exponents ~ and 
and to determine their numerical values. 

The basic time scale in the subsequent analysis is the Boltzmann mean 
collision time rB, i.e., the mean time between two collisions suffered by any 
one particle. If a ( t ) = n ( t )  -l/a denotes the mean spacing between particles 
at time t [n( t )=N(t ) / t2  is the instantaneous number density] and ( v ) ( t )  
the r.m.s, velocity of particles, the usual kinetic argument 11o) shows that rB 
is proportional to 

[a( t)]  d 1 
rB ~ ( v ) ( t ) ( a ) ( t )  d - '  ~ n ( t ) ( v ) ( t ) ( m ) " c d - i )  (9) 

where ( a )  d-~ is proportional to the binary collision cross selection. 
Strictly speaking, rB is properly defined for a given pair of particles in the 
low-density limit only, where coalescence events involving more than two 
particles are negligible. Equation (9) shows that, in general, ra varies with 
time. 

Now, at any given time, let r' be the shortest collision time, i.e., the 
time at which the next binary collision will take place involving any 
pair among tl~e C2N--~_--t~) possible pairs of particles. Since the probability 
that any given particle will participate in that "next" collision is p = 
( N - 1 ) / ( ~ )  = 2/N, the relation between rB and r' is simply 

N(t)  , 
rB =-~--- r (10) 
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If multiple coalescence events have negligible weight, each collision will 
lower N(t) by 1; hence 

, M,o t N(t)(m)(t) (11) 
( m ) ( t + r ) = N ( - ~ - - l -  N(t)--I  

Now, except at the very early stages of the irreversible evolution, 3' ~ t, so 
that one may Taylor--expand the 1.h.s. of Eq (11): 

( m ) ( t  + r') - ( m ) ( t )  + 3' - -  
d (m) ( t )  

dt 

Hence 

d(m) ( t )  1 ( m ) ( t )  ( m ) ( t )  

dt 3' N(t) 23B 
(12) 

This result may be simply understood as follows: in a time interval 3B, each 
cluster typically collides, leading to an increase of the average mass which 
is of the order of ( m )  (t) itself. The differential equation for ( m )  (t) cannot 
be solved unless the precise time dependence of 3B is known. However, it 
is easily shown that a linear variation of rB is a necessary and sufficient 
condition for the existence of a scaling law (7a) of the mean mass. Indeed, 
if (7a) holds, then Eq. (12) implies 

t r 
t r 0C-- 

3B 

so that 3B oct. Conversely, if 3 B = At, then, according to Eq. (12), 

d(m) ( t )  ( m ) ( t )  
m 

dt 2At 

which is easily solved to yield precisely (7a) with ~ = 1/2A. 

3. MEAN-FIELD SCALING ANALYSIS 

We now address the problem of estimating the scaling exponents 
and ft. This will be achieved in the present section within the framework of 
a mean-field analysis physically equivalent to that of ref. 4. The key 
approximation which will be made throughout this analysis, either 
explicitly or implicitly, is to neglect any correlations between the initial 
momenta of particles which coalesce into a single sphere after a time t. This 



Particles Undergoing Ballistic Coalescence 1351 

assumption is likely to be wrong, since the momenta of the particles must 
satisfy certain constraints if they are to collide. Its degree of inadequacy 
may be expected to depend on dimensionality. 

To estimate the kinetic energy exponent ~, consider an initial set of N 
spheres of mass m o, r.m.s, speed vo,and momenta {pi(0)} (1 ~< i ~< N) which, 
at time t, merge into a single sphere of mass Nrn o, speed v(t), and momen- 
tum P(t). According to momentum conservation (lc), the latter is given by 

N 

P(t) = ~ p;(t) (13) 
i = 1  

Squaring Eq. (13) and taking a statistical average over all initial clusters of 
N particles that will merge into a single sphere of mass m at time t, one 
arrives at 

N 

(IP(t)12>,,= ~ (Ip,(0)12>m+ ~ (pi(0) 'p;(0)>, ,  (14) 
i= 1 i ~ j  

Use of the mean-field assumption leads to 

N 
9 2 ~  m D2 ~, (IP(t) l ->m= ~ (Ip~(0)l = - - ( p s ) , ,  

i= 1 mo 

o r  

_ ~_mov ~ (15) 

Averaging next over all possible values of N (or equivalently m), one 
obtains 

1 2 �89 ",~ ~mov o (16) 

which simply expresses that the kinetic energy per particle (or aggregate) is 
conserved: 

K(t) 
( e ) ( t ) -  =to  (17) 

N(t) 

Remembering the scaling relation (8b), this means that within the mean 
field approximation 

r = ~ M F  (18) 

The mean-field result (16), together with 

( m ) ( t )  no (19) 
mo n(t) 
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which follows directly from Eq. (5), show that the Boltzmann mean colli- 
sion time (9) scales like 

rBOC [ ( m ) ( t ) ]  ~ (20) 

where 

co= 3-- v ( d -  1) (21) 

Upon substitution of Eqs. (20) and (21) into Eq. (12), the differential equa- 
tion may be easily solved; ( m ) ( t )  is found to increase according to the 
power law (7a), with the following mean-field estimate of exponent ~: 

2 
~MF -- (22) 

3 - 2 v ( d -  1 ) 

result of Carnevale et al., ~4) ~ M v = 2 d / ( d + 2 ) ,  is When v=  1/d, the 
recovered. 

4. KINETIC THEORY AND HYPERSCALING RELATION 

The exponent relation (18) and the value (22) for ~ rely on the mean- 
field assumptions. The latter seem to lead to correct results in 1D, where 
these predictions agree very well with computer simulation data/4) In this 
section, we show that under much weaker assumptions, ~ and fi satisfy a 
hyperscaling relation which is more general than Eq. (18). Before present- 
ing a more rigourous derivation of that relation, based on the exact kinetic 
equation governing the irreversible evolution of the distribution functions, 
a rough argument is given first, which rapidly leads to the correct results. 
The r.m.s, speed scales like 

( v ) ( t ) o c  F (23) 

where in view of the scaling relations (7a), (7b), the exponent gamma is 
easily seen to relate to fi as 

7 = - 6 / 2  (24) 

Substitution of (23), (7a), and (19) into expression (9) for the mean colli- 
sion time shows that 

T B O C t  r  I) (25) 
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On the other hand, it was shown at the end of Section 2 that for a scaling 
law to exist for ( m ) ,  rB must scale like t. It is immediately concluded that 

y +  1 = ~ [ 1 - ( d -  1)v] (26) 

A more satisfactory proof of this hyperscaling relation, which brings out its 
possible limitations, is based on the kinetic equation for the distribution 
function of masses and velocities. The mass m will be treated as a con- 
tinuous variable rather than a discrete multiple of too, a reasonable 
assumption in the asymptotic regime when a broad distribution of masses 
has built up from a large number of coalescence events. Under these condi- 
tions, the one-particle distribution function for a spatially homogeneous 
system, f(~)(m, v, t), is the probability density for finding particles with 
mass m and velocity v at time t. This function is related to higher order dis- 
tribution functions by a BBGKY-like hierarchyJ 1~ If multiple coalescence 
events may be neglected, which is a valid assumption at sufficiently low 
densities, f( i)  is exactly related to the two-particle distribution function: 

f(2)(mj,vl,rl,m2, v2, r2, t)=f(Z)(ml,vl,mz, v2, r2--rl,t) (27) 

by the first equation of that hierarchy: 

Of(l)(m,v,t)=S,(d) f dmldm, dv, dv, lvl_v2l a] a_________~2 
Ot - - 

x {t~(m--m, --m2)~ (v--m' v'-~ m2v2.) 

-- g(mt -- m) g(vl -- v) -- g(m2 -- m) di(v 2 -- v))  

( a , + a 2  ) • ml, vl, m2, v2, ~ ., t (28) 

In Eq. (28), S,(d) is the total cross section of a particle of unit diameter 
(S, = 1,2, and n in 1, 2, and 3 dimensions, respectively). The two-particle 
distribution function appearing in the collision integral of Eq. (28) is taken 
at contact, i.e., when the centers of the two colliding particles are at distan- 
ces equal to tl% sum of their radii. In writing Eq. (28), it was assumed-for 
the sake of simplicity that the system is spatially homogeneous as expressed 
by Eq. (27). The kinetic equation (28) expresses the usual gain-loss 
balance; if coalescence events involving more than two particles became 
important, additional collision integrals involving higher order distribution 
functions f(3) . . . .  would be needed. Keeping in mind Eqs. (7a), (8a), and 
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(23), we make the following self-similarity assumptions regarding the time 
dependence of the one- and two-partiele distribution functions: 

l f , , ,  (m  v )  f"~(m, v, t)=~-g~ ~'~7 (29a) 

f,Zl(ml,v,,r,,m,,v,,r,,t)=l?,z,(m~_ _ _ t ~2 ~ , v,F, m2t r , v2t r '  Irt~21 ) (29b) 

where fr and f~21 are scaling functions which do not explicitly depend on 
time. Conservation of the total mass implies 

f?f dm dvrnf~l~(m, v, t) =nomo (30) 

Substitution of the self-similarity form (29a) into (30) immediately leads to 
the following value of the exponent ~ :  

0q = 2~+d?  (31) 

To determine ~ it is sufficient to express that f(21 factorizes when the two 
particles are far apart, according to 

f(2)(ml, Vl, rl, mz, vz, r,_, t) I,,-,,-r ~ ~ , f l l )(nh ' vl, t ) f t l ) (m2,  vz, t) 

which can only be satisfied by the self-similar expressions (29a), (29b), 
provided that 

ctz = 2~1 = 44 + 2d), (32) 

If (29a) and (29b) are now substituted into the kinetic equation (28), the 
hyperscaling relation (26) follows. The mean-field values (22) and (18) of 
the exponents ~ and J satisfy this relation identically. 

5. U N I V E R S A L  D I S T R I B U T I O N  OF M A S S E S  

The instantaneous mass distribution function f (m,  t) can be derived 
from the one-particle distribution function fll~(rn, v, t) by integrating over 
velocities v. Carrying out this integration on both sides of the hierarchy 
equation (28), one arrives at the following kinetic equation forf(m, t): 

Of(m, t) 
= f dml dm2 { 6 ( m - m l - m 2 ) - 6 ( m - m l ) -  J ( m -  m2)} Ot 

x v2(ml, m2, t) (33) 
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where the collision frequency per unit volume v2(m~, m2, t) between par- 
ticles of mass m~ and m 2 is a functional o f f  ~2~; its explicit form immediately 
follows from inspection of the r.h.s, of Eq. (28), but will not be needed here. 

Following Piasecki, ~6~ we close the kinetic equation by making the 
"weak" mean-field assumption: 

v2(m I , m~, t) = f ( m l ,  t) f (m2,  t__......~) v(t) (34) 
- n ( t )  n ( t )  

where v(t) denotes the total collision frequency per unit volume, while 

f? n(t) = f (m ,  t) dm (35) 

is the instantaneous number density N(t)/f2. The factorization (34) does 
not preclude strong correlations between the velocities of particles about to 
collide. 

The set of equations (33) and (34) gives rise to a closed nonlinear 
integrodifferential equation, since upon integration over m, Eq. (33) leads 
back to 

tin(t) 
- - -  v(t) 

dt 

The problem may be solved by Laplace transformation, with the result 16~ 

( m ) ( t )  exp ( m )  = nomo [ ( m ) ( t ) ]  2 exp (36) 

which shows that the mass distribution function is a universal exponential 
function which scales with the instantaneous mean mass (m) ( t ) ;  the form 
(36) is valid in the asymptotic regime (m)( t )>>mo,  irrespective of the 
initial distribution of masses. The result, initially derived by Piasecki ~6} in 
1 D, is in fact valid for any dimension, provided multiple coalescence events 
may be neglected, and the weak mean-field assumption is valid. 

6. S I M U L A T J O N  OF THE T W O - D I M E N S I O N A L  S Y S T E M S  

The predictions of mean-field theory have been tested for the one- 
dimensional system of coalescing point masses by extensive simulations 
reported in ref. 4, and excellent agreement was found, in particular as 
regards the values of the exponents ~ and fi(~ =f i=2/3) .  However, the 1D 
case is somewhat peculiar, since the size of the particles is irrelevant, and 
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coalescence events are strictly binary. For that reason, we have carried out 
detailed simulations of ballistic coalescence of disks moving in a plane. Two 
values of v were considered, namely v = 1/2 (corresponding to "collapsed" 
chains in the polymer language) and v=  3/4 (corresponding to "swollen" 
polymer chains). The former case is the object of the present section, while 
the latter will be discussed in the following section. 

The code used in the simulations closely resembles the molecular 
dynamics (MD) algorithm for hard disks.lINI N0 nonoverlapping disks of 
diameter ~o and mass rn o are placed in a square cell of area S =  L 2 and 
periodic boundary conditions are imposed. Each disk is assigned an initial 
velocity drawn from some given distribution function ~b(v). The disks are 
left to move freely (ballistic motion) until they collide. The colliding par- 
ticles merge (coalesce) into a single disk of mass and diameter given by 
Eqs. ( la) and (3) and with velocity and CM given by Eqs. ( lb)  and (lc). 
The algorithm checks for possible multiple coalescence events which occur 
whenever the disk resulting from the merging of the colliding particle pair 
overlaps any additional particle in the neighborhood. If so, these particles 
are absorbed in turn, under the same rules ( l a ) - ( lc )  and (3). An initial 
table of collision times for all pairs of particles is then updated, and free- 
flight motion resumes until the next collision occurs.  

This dynamical evolution conserves the total momentum of the 
system. Moreover, for v = 1/2, the conservation of mass implies conserva- 
tion of the packing fraction, i.e., of the fraction of the total area S covered 
by the nonoverlapping disks. Omitting the factor M4, we have 

1 N(t)  1 N ( t ) n 7  i "~ 1 G O 
n * ( t ) = ~  E.= tr ,2 ---- S ,=~" mo tr~ = S ~oo N ~ 1 7 6  = n*  (37) 

It is important to realize that the mean free path of the particles increases 
with time. Indeed, exploiting Eq. (37), we obtain 

1 ( a ) ( t )  
t~  ~ n----~ ~ [ ( rn ) ( t ) ] l /2  ~ t r (38) 

The system's evolution, in the course of the simulations, was monitored 
until l = L; any subsequent evolution would obviously be strongly affected 
by finite-size effects. The situation is reminiscent of critical fluctuations 
close to a second-order phase transition: standard simulation techniques 
are useless in the critical range, i.e, for temperatures sufficiently close to the 
critical temperature, such that the correlation length becomes comparable 
to the size of the simulation cell. The difficulty may be overcome by appeal- 
ing to finite-size scaling techniques, ~12~ but the translation of these ideas to 
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the present  irreversible s i tuat ion is far from obvious.  In  practice, the 
s imulat ions were in terrupted when 1 = L/5. 

Simulat ions  were carried out  for samples conta ining initially 
5 x 1 0 3 ~ N o ~ < 2 x 1 0 5  part icles and reduced densities in the range 
10-3~< n* ~< 0.8. Initial  velocities were usually sampled from a Maxwel l ian  
dis t r ibut ion ~b(v) at a tempera ture  To. In most  runs, an initial square lattice 
configurat ion was first al lowed to melt and equil ibrate  by letting the system 
evolve according to elastic collision dynamics;  several independent  runs 
were made  for most  initial state points  in order  to detect  any sensitivity of 
the subsequent  irreversible evolut ion on initial posi t ions and velocities, but  
no significant differences were observed. The Bol tzmann mean collision 
time of  the initial monodisperse  state 

ro = (moao/rtks To)1/2/2n* 

served as a na tura l  t ime scale throughout .  The characterist ics and key 
results are summarized in Table  I. In all cases which were investigated, 
log- log  plots of  ( m >  and K versus t/r0; clearly exhibited a scaling regime 
extending over typical ly two decades in time. Representat ive examples are 
shown in Fig. 1. The slopes of  the log - log  plots yield the exponents  ~ and 

which are listed in Table I (in all the text, log means log base 10). In 
practice, g turns out  to be more  accurately determined (with an est imated 
relative statistical error  of  less than 2 % )  than ~. Table  I also lists the 
"theoret ical"  values of  ~ deduced from the hyperscal ing relat ion (26), which 
reduces in the case under  considera t ion ( d = 2  and v =  1/2) to ~ = 2 - g .  

Table I. Evolution of the MD Estimates of the Exponents ~ and 6 wi th the 
Initial Reduced Density n* ~ 

Multiple coalescence 
n* N o ~ ~ ~th (%) 

0.001 99856 1.12 0.8 0.88 0.029 
0.01 99856 1.12 0.85 0.88 0.23 
0.01 199809 1.12 0.86 0.88 0.22 
0.01 399424 I. 12 0.85 0.88 0.23 
0.05 99856 1.10 0.90 0.90 1.23 
0.3 99856 1.02 0.91 0.92 11 
0.5 ' 99856 1.03 0.95 0.97 26 
0.8 99856 1.0 1.0 1.0 66 

o ~th is evaluated from the hyperscaling relation (26) and the measured ~. The weight of mul- 
tiple coalescence is also shown: the percentage is the ratio (number of particles disappearing 
in multiple coalescence events)/No. The data are for a size-mass exponent v = 1/2. 



1358 Trizac and Hansen 

Inspection of  the results in Table I calls for the following comments :  

�9 As expected, mult iple  coalescence events, which are very rare at  low 
densities, become more  and more  impor tan t  as the density increases, and 
are p redominan t  at  the highest packing  fraction investigated. 

�9 The exponents  ~ and ~ differ significantly from their  mean-field 
values ~Mr=6MF= 1 [cf. Eqs. (22) and  (18)] .  In  par t icular ,  f i > ~ ,  so that  
the kinetic energy per  part icle decreases in time [cf. Eq. (8b)]  ra ther  than 
being constant ,  as implied by  the mean-field argument  of  Section 3; this 
clearly il lustrates the b reakdown of  the val idi ty of  the mean-field assump- 
t ions in dimension d > 1. 

�9 The exponents  ~ and ~ are "nonuniversal ,"  i.e., their values depend 
on the reduced density n*. This may  not  be surprising, in view of  the 
growing impor tance  of  mult iple  coalescence events. The exponents  are seen 

I ' ' ' 1 ' ' ' 1  

(a) 

E 
A 

E 2 
V 

v 

O 

0 

- 2  0 2 4 

log (t /T0) 

Fig. I. (a) Plot of log ((m)/mo) vs. log (t/to) where ro is the Boltzmann mean collision time 
at t = 0 (which depends on ii*) and log means log~o. Initial conditions: fluidlike configuration 
of No = 99856 hard disks, with n* = 10-2 and n* = 0.8 (upper curve). (b) Plot of log (K/Ko) 
vs. log (t/to). The dashed line represents the slope of log (K/Ko) vs. log (t/ro) according to the 
mean-field result, with exponent 5Mr. Initial conditions: fluidlike configuration of No = 
399424 hard disks, with n* = 10 -2 .  
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Fig. 1. (Continued) 

to deviate most from their mean-field values at low densities, while they 
reduce to the mean-field values within statistical uncertainties at the highest 
density investigated. Multiple coalescence events thus appear to restore the 
validity of the assumption of lack of correlations between velocities of dif- 
ferent disks about to merge into a single particle, and between velocities 
and masses. In the opposite low-density limit, it is tempting to conclude 
from our data that the exponents go over to universal limits ( ~ -  0.88; 
(~ = 1.12) when multiple coalescence becomes statistically insignificant. It is 
difficult, however, to test this conjecture, since increasingly large system 
sizes would be needed in order to satisfy the constraint l < L over a suf- 
ficiently long time interval required to probe the asymptotic scaling regime 
at very low densities. 

�9 The hyperscaling relation ~ = 2 - ~  is satisfied within statistical 
uncertainties a~ all densities. It is important to stress that the relation holds 
even outside the range of densities where the proof given in Section 4 is, 
strictly speaking, applicable. 

As the irreversible evolution proceeds, the initially monodisperse 
system gradually evolves into a polydisperse system characterized by a 
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Log of the mass distribution function versus m/m o at four successive times, when 
there are N(t) particles left, as indicated (No = 399424 and n*= 0,01 ). 

mass distribution f ( m ,  t), where m is an integer multiple of  the initial 
mass too. In the cont inuum limit, it was shown in Section 5 that f (m,  t) is 
expected to be an exponential function of  m / ( m ) ( t ) ,  under rather weak 
assumptions. Typical histograms of  the distribution of  the integer values of  
m/m o are plotted in Fig. 2 at several stages of the irreversible evolution. At 
each stage, the logarithm of the distribution is well fitted to a straight line, 
so that one may express the distribution as 

1 m  oxp[ (39) 

M(t)  and fl(t) differ from their values in the cont inuum limit by corrections 
due to discreteness; these corrections vanish in the asymptotic limit 
M( t ) ~ Go, according to 

( m )  1 " mo . {" mo 
M ( t ) =  + 2---M~ -r o ~ - ~ )  (40a) 

f l ( t ) N ~  1 m~ ( m ~  (40b) 
M2(t~ 12M2(t~ + ~  \ M 2 )  
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Fig.  3. f(m, t) v e r s u s  t / r0 ,  f o r  m/mo = 2, 5 a n d  10 (n* = 0.01 ); s i m u l a t i o n  d a t a  a r e  c o m p a r e d  
to the distribution function in the continuum limit (36) (dotted curve) and with the leading 
discreteness correction included [Eqs. (39), (40a), and (40b), dashed curve]. 

The influence of  the discreteness of  the mass spectrum is illustrated in 
Fig. 3, where the evolution of  the populations of  masses m/mo  = 2, 5, and 
10 is plotted versus time. As expected, corrections due to discreteness are 
significant only for the lowest mass. 

Figure 4 shows the time evolution of  the instantaneous mass structure 
factor: 

I 
S, , , , (k ,  t)=Nom----~o Ipk . , ( t ) l  2 (41) 

where k is a ffave vector compatible with the periodic boundary  condi- 
tions, and pk,,(t) is the corresponding Fourier  component  of  the instan- 
taneous mass density: 

N(t) 

Pkm(l)  = ~,, m ie  ik'ritt '  (42) 
i = 1  

822/82/5-6-10 
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Fig. 4. S,,,,,(k,t) versus k at four stages of the irreversible evolution. The straight line 
represents the aymptotic value (k--* oo) of S,,,,,(k, t). k is given in units 2n/L, where 2n/ao = 
353. The initial configuration is a fluid of N o = 99856 hard disks with n * =  0.8. 

In order to achieve better statistics, the structure factor (41) was averaged 
for each value of ]kJ over five different vectors having the same modulus in 
the first Brillouin zone, and then coarsened over 50 different successive 
moduli. Initially, S.,.,(k,t) reduces to the equilibrium structure factor of a 
fluid of equal-size hard disks. As the system evolves, the increasing degree 
of polydispersity reflects itself in the appearance of a broad pre-peak, which 
grows at the expense of the initial main peak centered around 2rUa 0. At 
longer times, the structure is gradually washed out by polydispersity, 
except at the smallest wavenumbers k, where S...(k, t) drops to a rather 
small value related to the compressibility of the polydisperse fluid. The 
asymptotic (k--* co) value of S.,.,(k. t) is equal to N(t)(m2)(t)/mo, and 
hence increases like t ~ in the scaling regime. 

Another key quantity which was investigated in the simulations is the 
instantaneous distribution function of kinetic energies f(e, t), defined as 

f(e, t) =n-~-(-(~ yy l mvzf~l)(m, v, t) dm (43) 

where.f~l is the one-particle distribution function introduced in Section 4. 
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Fig. 5. Plots of (e) f (e ,  t) vs. e / ( e )  for No = 99856 and n* = l0 -3. The symbols correspond 
to N(t)=87000 (triangles), 67000 (squares), 4"/000 (crosses), 27000 (hexagons), and 17000 
(circles) particles ]eft. The curve represents )~(x ) = exp( - x ). 

Starting from an initially well-equilibrated sample, characterized by a 
Maxwellian distribution at a temperature  To,f(e, t) turns out to remain 
exponential  to a high degree of accuracy at all times; the instantaneous 
temperature  T(t) derived from the slope of logf (e ,  t) versus e is found to 
agree perfectly with the kinetic temperature  derived from the mean kinetic 
energy [cf. Eq (6)].  These findings are illustrated in Fig. 5 where the values 
of  (e)(t) f(e,  t), measured at five successive times, are plotted versus 
e/(e)(t). The data are seen to collapse on a single master  curve)~(x) which 
is practically indistinguishable from an exponential,  confirming that  

(~)(t)y (44) 

with.~(x) = e x p ( - x ) .  We conclude that  at every stage of the evolution, the 
system is characterized by a Bol tzmann distribution of energies, and hence 
appears  to remain constantly in a state of  local thermodynamic  equi- 
librium. Even more  remarkable  is the observat ion that the energy distri- 
bution function evolves toward a Bol tzmann distribution, when the initial 
distribution is highly non-Maxwellian.  A typical example is shown in Fig. 6, 
where the initial d is t r ibut ionf(e ,  t = 0) has been chosen to increase linearly 
with e up to eo. A tail at  e > eo is seen to build up rapidly, while low-energy 
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p lot  has  been a d d e d  to emphas ize  the Bo l t zmann  n a t u r e  o f  the energy  d i s t r ibu t ion  funct ion  

[ l o g f ( e ,  t) versus e, t r iangles  r i g h t - h a n d  sca le] .  

states are gradually populated. Before the end of the irreversible evolution, 
at a stage where about 10 4 particles are left, the distribution f(e, t = 0) has 
returned to an exponential Maxwell-Boltzmann form. Such a behavior is 
the rule for a system relaxing toward a state of thermodynamic equi- 
librium, but is unexpected in a system far from equilibrium, which 
moreover does not conserve total energy. The "thermalization" shown in 
Fig. 6 was observed as well for other initial energy distributions differing 
from a Maxwell-Boltzmann distribution. 

Finally, the mean square displacement of tagged particles was 
monitored to characterize the self-diffusion of particles gradually coalescing 
with others to form larger and larger particles. In the limit of elastic colli- 
sions (rather than inelastic coalescence) the mean square displacement 
would increase linearly according to Einstein's law: 

(Jr(t) - r(0)12) = 4Dt (45) 

discarding any logarithmic corrections expected in 2D systems, and 
associated with a slow t -~ decay of correlations (see, e.g., ref. 13). 
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(n* = 10 -2, upper curve, left-hand scale) and a high density (n* =0.8, lower curve, right-hand 
scale). 

Plots of mean square displacements (averaged over all particles 
present at time t) versus time for the coalescence dynamics considered in 
the present work are shown in Fig. 7 for two densities. The mean square 
displacement appears to increase more slowly than linearly at the lower 
density (subdiffusive behavior), while, on the contrary, superdiffusive 
behavior seems to occur at the higher density. However, these observations 
should only be considered as indicative, since the results in Fig. 7 are based 
on a single irreversible history. Averaging over many initial conditions 
would require a much larger computational effort. 

7. CATASTROPHIC GROWTH 

We have also examined the case where the exponent v in the size-mass 
relation takes on its Flory value v =  3 / (d+2) ,  corresponding to "swollen" 
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chains in the polymer language. In that case, the mean-field estimate of the 
mean mass exponent ~ is, according to Eq. (22), 

2 ( d + 2 )  ~ M F = - -  (46) 
3(4 - d )  

This hints at the nonexistence of a scaling regime for dimensions d >/4. The 
instantaneous packing fraction n*(t), rather than being constant as in the 
case v = l/d, is now expected to increase with time, according to 

1 N(t) 
n*(t) =~ 2 trai ~ t2r 2) (47) 

i=1 

The increase in packing fraction means that multiple coalescence events 
become more and more probable as time evolves. Since the results of the 
previous section clearly suggest that the exact scaling law exponents ~ and 

change with packing fraction, it is not clear whether a clear-cut scaling 
regime exists for the "swollen chain" case. Also, since n*(t) cannot increase 
beyond close packing, one expects that the irreversible coalescence of par- 
ticles terminates in a final "catastrophic" event involving all remaining 

Fig. 8. 

.' ' ' I ' ' ' I ' ' ' I ' ' ' i ' 

- 0  

4 

- 2  

o 

1 

- 6  
0 

-2 0 2 4 

log (t/~-o) 
Plots of log((m)/mo} (left-hand scale) and log(K/Ko) (right-hand scale) vs. log(t/to) 

for tile FIory case (d=2, v= 3/4); n* = l0 -3. 

3 

A 

v 2 

o 



Particles Undergoing Ballistic Coalescence 1367 

particles. The occurrence of  such a "catastrophe" may be avoided for any 
given initial number  of  particles No provided the initial reduced density 
n* = Noad/I2 is less than a critical value n*c. The latter may be roughly 
estimated by expressing that in the final state of  the irreversible evolution, 
all initial particles have merged into a single sphere of  mass Nomo and 
diameter 2' = N~ao, which can at most be equal to the edge L = g2 ~/d of the 
system volume. This leads immediately to the estimate 

n*c = nzl,,o -vd (48) 

In order to explore the possible scenarios, we have carried out M D  simula- 
tions on 2D samples of  No = 2 x 105 initial particles. With v = 3/4, Eq. (48) 
then leads to the estimate n'~c=No ~/2 20.0022. We have accordingly 
studied the cases with initial reduced density 17" =0.001, n~ =0.003, and 
17" = 0.01. Log- log  plots of mean mass and of  the total energy versus time 
are shown in Fig. 8 for 17" = I0-3.  A clear-cut scaling regime is observed 
over more than two decades, and the resulting exponents have the values 

= 1.10 and 6 = 1.44, which differ considerably from the mean-field values 
~MF=6MF=4/3. The scaling relation (26), which reads ~ = 4 - 2 ~  in the 
present case, is very well obeyed. 
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Same as Fig. 8, for n* = 3 x 10 -2. The evolution terminates in a final coalescence 
event involving all N(t)= 830 particles. 

The corresponding results for n* = 0.003 are shown in Fig. 9. In this 
case, no genuine scaling regime is observed; the exponents 6 and ( appear 
to change gradually as the packing fraction increases, as suggested above. 
A similar remark holds for n* =0.01 (cf. Fig. 10), but in this case, the 
evolution terminates in a "catastrophic" multiple coalescence event, at a 
stage where 800 particles are left and the reduced density has reached the 
value n * ~  0.25. This brutal transition is vaguely reminiscent of a sol-gel 
transition in polymer solutions. The transition is reproducible, in the sense 
that it is observed to occur at the same stage of the evolution for different 
initial conditions. 

8 .  C O N C L U S I O N  

The dynamic scaling behavior of ballistic coalescence is richer and 
more complex than surmised from mean-field arguments and the results of 
simulations of 1D systems. Considering first the coalescence into compact 
("collapsed") particles, the most important conclusion of the present work 
on 2D systems is the confirmation of the existence of a well-defined scaling 
regime, but with mass and energy exponents which are nonuniversal, since 
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they turn out to depend on packing fraction. This may be traced back to 
the increasing weight of multiple coalescence events, which are absent in 
1D. As the density is lowered, these events become rarer, and the exponents 

and 8 converge toward limiting values which differ significantly from the 
prediction on mean-field theory (this seems to be at variance with the con- 
jecture put forward by ref. 5). These limiting values satisfy a hyperscaling 
relation which follows from the exact kinetic equation for the distribution 
function, and a self-similarity assumption. The hyperscaling relation, 
which, strictly speaking, is justified in the low-density (binary coalescence) 
limit only, continues to be satisfied by the measured exponents up to 
high densities, where these exponents appear to return to their mean-field 
values. 

The mass distribution is found to be exponential and universal to a 
high degree of accuracy, in agreement with a prediction derived from a 
"weak" mean-field assumption. The energies are also distributed according 
to a Boltzmann distribution at all times, and, more surprisingly, the 
nonequilibrium system is found to thermalize (with a time-dependent tem- 
perature) even when the initial distribution of velocities is highly non- 
Maxwellian. 

In the other case investigated here, when the size-mass relation 
corresponds to "swollen" objects, a scaling regime is observed only when 
the initial packing fraction is sufficiently low. At higher values of n o , the 
irreversible evolution terminates in a final "catastrophic" multiple 
coalescence event. 

The present model may be regarded as providing a highly schematic 
description of polymerization or colloid growth. However, the assumption 
of ballistic motion between coalescence events is not suitable for 
phenomena which are essentially diffusion controlled. For that reason we 
are presently considering a variant of the model where the particles are 
undergoing Brownian (rather than free) motion between collisions. The 
simulation work will also be extended to 3D, where deviations from mean- 
field behavior may be even more pronounced. 
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